منابع مشابه
Fluid flow through ramified structures.
We investigate the fluid flow through two-dimensional ramified structures by direct simulation of the Navier-Stokes equations. We show that for trees with n generations, the flow distribution strongly depends on the Reynolds number Re. Specifically, for a tree without loops the flow becomes highly heterogeneous at high Re. For a tree with loops, on the other hand, the flow distribution tends to...
متن کاملConsistency and fluctuations for stochastic gradient Langevin dynamics Consistency and fluctuations for stochastic gradient Langevin dynamics
Applying standard Markov chain Monte Carlo (MCMC) algorithms to large data sets is computationally expensive. Both the calculation of the acceptance probability and the creation of informed proposals usually require an iteration through the whole data set. The recently proposed stochastic gradient Langevin dynamics (SGLD) method circumvents this problem by generating proposals which are only ba...
متن کاملDynamics of Langevin Simulations
This chapter reviews numerical simulations of quantum field theories based on stochastic quantization and the Langevin equation. The topics discussed include renormalization of finite stepsize algorithms, Fourier acceleration, and the relation of the Langevin equation to hybrid stochastic algorithms and hybrid Monte Carlo. Invited chapter to appear in the special supplement “Stochastic Quantiza...
متن کاملMirrored Langevin Dynamics
We generalize the Langevin Dynamics through the mirror descent framework for first-order sampling. The näıve approach of incorporating Brownian motion into the mirror descent dynamics, which we refer to as Symmetric Mirrored Langevin Dynamics (S-MLD), is shown to connected to the theory of Weighted Hessian Manifolds. The S-MLD, unfortunately, contains the hard instance of Cox–Ingersoll–Ross pro...
متن کاملNatural Langevin Dynamics for Neural Networks
One way to avoid overfitting in machine learning is to use model parameters distributed according to a Bayesian posterior given the data, rather than the maximum likelihood estimator. Stochastic gradient Langevin dynamics (SGLD) is one algorithm to approximate such Bayesian posteriors for large models and datasets. SGLD is a standard stochastic gradient descent to which is added a controlled am...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Statistical Mechanics: Theory and Experiment
سال: 2017
ISSN: 1742-5468
DOI: 10.1088/1742-5468/aa6bc6